Meta Propagation Networks for Graph Few-shot Semisupervised Learning (AAAI_2022)

Kaize Ding, Jianling Wang, James Caverlee, and Huan Liu
Arizona State University
Texas A&M University
{kaize.ding, huan.liu}@asu.edu
{jlwang, caverlee}@tamu.edu

2022. 3. 13 • ChongQing

Reported by Lele Duan

Code&datasets: https://github.com/kaize0409/Meta-PN

- 1.Background
- 2.Method
- 3. Experiments

Background

- Few-shot semi-supervised node classification: only few labeled nodes per class are available.
 - Existing GNNs developed for semi-supervised node classification predominantly assume that the provided gold-labeled nodes are relatively abundant.
 - Overfitting and oversmoothing.
 - No auxiliary knowledge.
- Solution:
 - Inferring optimal pseudo labels on unlabeled nodes.

Over view

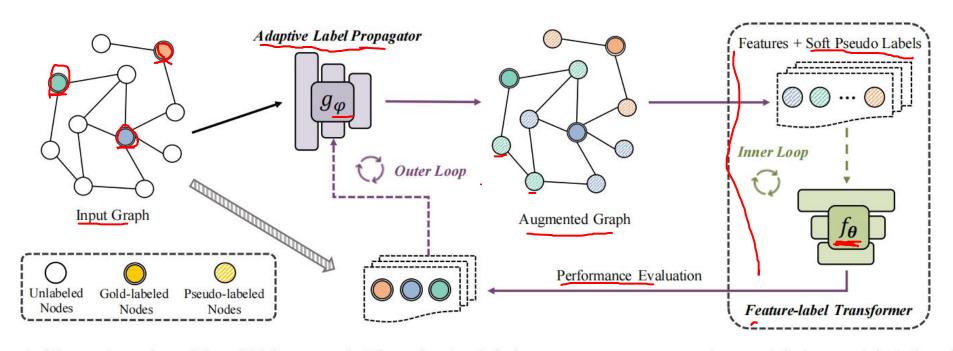


Figure 1: Illustration of our Meta-PN framework. The *adaptive label propagator* propagates known labels to unlabeled nodes and the *feature-label transformer* transforms the features of each node to a soft label vector. Specifically, the *adaptive label propagator* is meta-learned to adjust its label propagation strategy to infer accurate pseudo labels on unlabeled nodes, according to the *feature-label transformer*'s performance change on the labeled nodes. We omit the node features for simplicity.

$$G = (\mathcal{V}, \mathcal{E})$$
 $\mathbf{X} \in \mathbb{R}^{n \times f}$ $\mathbf{A} \in \{0, 1\}^{n \times n}$

$$\underline{\tilde{\mathbf{A}}}_{sym} = \underline{\tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}}} \quad \mathbf{Y} \in \mathbb{R}^{n \times \underline{c}}$$

Adaptive Label Propagator (Meta

$$\hat{\mathbf{Y}}_{i,:} = \sum_{k=0}^{K} \gamma_{ik} \mathbf{Y}_{i,:}^{(k)}, \mathbf{Y}^{(k+1)} = \mathbf{T} \mathbf{Y}^{(k)}, \tag{2}$$

$$\gamma_{ik} = \frac{\exp\left(\mathbf{a}^{\mathrm{T}} \mathrm{ReLU}\left(\mathbf{W} \mathbf{Y}_{i,:}^{(k)}\right)\right)}{\sum_{k'=0}^{K} \exp\left(\mathbf{a}^{\mathrm{T}} \mathrm{ReLU}\left(\mathbf{W} \mathbf{Y}_{i,:}^{(k')}\right)\right)}, \qquad (3)$$

where $\mathbf{a} \in \mathbb{R}^c$ is the attention vector and $\mathbf{W} \in \mathbb{R}^{c \times c}$ is a weight matrix. By setting the attention vector and weight

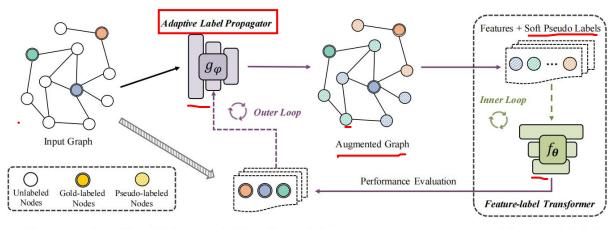


Figure 1: Illustration of our Meta-PN framework. The *adaptive label propagator* propagates known labels to unlabeled nodes and the *feature-label transformer* transforms the features of each node to a soft label vector. Specifically, the *adaptive label propagator* is meta-learned to adjust its label propagation strategy to infer accurate pseudo labels on unlabeled nodes, according to the *feature-label transformer*'s performance change on the labeled nodes. We omit the node features for simplicity.

Feature-label Transformer (Target Model)

$$\mathbf{P}_{i,:} = \underline{f}_{\boldsymbol{\theta}}(\mathbf{X}_{i,:}), \tag{4}$$

where $f_{\theta}(\cdot)$ is a multi-layer perceptron (MLP) followed by a softmax function.

Model Learning via Bi-level Optimization

Outer loop:

$$\underline{\phi}^* = \arg\min_{\phi} \mathbb{E}_{v_i \in \mathcal{V}^L} [\mathcal{L}(f_{\theta^*(\underline{\phi})}(\mathbf{X}_{i,:}), \mathbf{Y}_{i,:})],$$
(5)

Inner loop:

$$\underline{\boldsymbol{\theta}^*}(\boldsymbol{\phi}) = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{v_i \in \mathcal{V}^U} [\mathcal{L}(f_{\boldsymbol{\theta}}(\mathbf{X}_{i,:}), g_{\boldsymbol{\phi}}(\mathbf{Y}, \mathbf{A})_{i,:})].$$

$$\boldsymbol{\theta}' = \boldsymbol{\theta} - \eta_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}} J_{\text{pseudo}}(\boldsymbol{\theta}, \boldsymbol{\phi}). \tag{6}$$

$$\phi' = \phi - \eta_{\phi} \nabla_{\phi} J_{\text{gold}}(\theta'(\phi)). \tag{7}$$

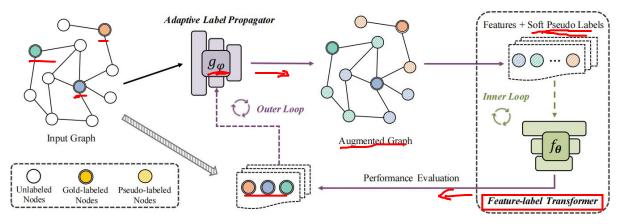


Figure 1: Illustration of our Meta-PN framework. The *adaptive label propagator* propagates known labels to unlabeled nodes and the *feature-label transformer* transforms the features of each node to a soft label vector. Specifically, the *adaptive label propagator* is meta-learned to adjust its label propagation strategy to infer accurate pseudo labels on unlabeled nodes, according to the *feature-label transformer*'s performance change on the labeled nodes. We omit the node features for simplicity.

Table 1: Summary statistics of the evaluation datasets.

Dataset	# Nodes	# Edges	# Features	# Classes
Cora-ML	2,810	7,981	2,879	7
CiteSeer	2,110	3,668	3,703	6
PubMed	19,717	44,324	500	3
MS-CS	18,333	81,894	6,805	15
ogbn-arxiv	169,343	1,166,243	15	40

Table 2: Test accuracy on <u>few-shot</u> semi-supervised node classification: mean accuracy (%) \pm 95% confidence interval.

Method	Cora-ML		CiteSeer		PubMed		MS-CS	
	3-shot	5-shot	3-shot	5-shot	3-shot	5-shot	3-shot	5-shot
MLP	41.07 ± 0.76	51.12 ± 0.61	43.34 ± 0.56	44.90 ± 0.60	56.59 ± 0.93	59.90 ± 0.84	70.33 ± 0.37	79.41 ± 0.31
LP	62.07 ± 0.71	68.01 ± 0.62	54.07 ± 0.59	55.73 ± 1.19	58.75 ± 0.89	59.91 ± 0.85	57.96 ± 0.69	62.98 ± 0.61
GCN	48.02 ± 0.89	67.32 ± 1.02	53.60 ± 0.86	62.60 ± 0.58	58.89 ± 0.80	65.77 ± 0.98	69.24 ± 0.94	84.43 ± 0.89
SGC	49.60 ± 0.55	67.24 ± 0.86	57.37 ± 0.98	61.55 ± 0.53	63.37 ± 0.93	64.93 ± 0.81	72.11 ± 0.76	87.51 ± 0.27
GLP	65.57 ± 0.26	71.26 ± 0.31	65.76 ± 0.49	71.36 ± 0.18	65.34 ± 0.54	65.26 ± 0.29	86.10 ± 0.21	86.94 ± 0.23
IGCN	66.60 ± 0.29	72.50 ± 0.20	67.47 ± 0.29	72.92 ± 0.10	62.28 ± 0.23	65.19 ± 0.13	85.83 ± 0.06	87.01 ± 0.05
M3S	64.66 ± 0.31	69.64 ± 0.18	65.12 ± 0.20	68.18 ± 0.18	63.40 ± 0.32	68.85 ± 0.26	84.96 ± 0.18	86.83 ± 0.29
APPNP	72.39 ± 0.98	78.32 ± 0.58	67.55 ± 0.77	71.08 ± 0.61	70.52 ± 0.62	74.24 ± 0.87	86.65 ± 0.42	90.13 ± 0.86
DAGNN	71.86 ± 0.75	77.20 ± 0.69	66.62 ± 0.27	70.55 ± 0.12	71.22 ± 0.82	73.91 ± 0.71	86.32 ± 0.57	90.30 ± 0.66
C&S	68.93 ± 0.68	73.37 ± 0.24	63.02 ± 0.72	64.72 ± 0.53	70.51 ± 0.57	73.22 ± 0.57	85.86 ± 0.45	87.99 ± 0.24
GPR-GNN	70.98 ± 0.84	75.18 ± 0.52	64.32 ± 0.81	65.28 ± 0.52	71.03 ± 0.73	74.08 ± 0.65	86.12 ± 0.37	90.29 ± 0.38
Meta-PN	$\textbf{74.94} \pm \textbf{0.25}$	$\textbf{79.88} \pm \textbf{0.15}$	$\textbf{70.48} \pm \textbf{0.34}$	$\textbf{74.14} \pm \textbf{0.50}$	$\textbf{73.25} \pm \textbf{0.77}$	$\textbf{77.78} \pm \textbf{0.92}$	$\textbf{88.99} \pm \textbf{0.29}$	$\textbf{91.31} \pm \textbf{0.22}$

Table 3: Test accuracy on standard semi-supervised node classification: mean accuracy $(\%) \pm 95\%$ confidence interval.

Method	Cora-ML	CiteSeer	PubMed	MS-CS
MLP	$68.42 \pm .34$	$63.98 \pm .44$	$69.47 \pm .47$	$88.30 \pm .13$
LP	$75.74 \pm .27$	$65.62 \pm .43$	$69.82 \pm .70$	$72.03 \pm .25$
GCN	$82.70 \pm .37$	$73.62 \pm .39$	$76.84 \pm .44$	$91.10 \pm .20$
SGC	$75.97 \pm .72$	$75.57\pm.28$	$71.24\pm.86$	$90.56 \pm .14$
GLP	$81.67 \pm .14$	$75.21 \pm .14$	$78.95 \pm .09$	$91.85 \pm .04$
IGCN	$82.11 \pm .09$	$75.22 \pm .10$	$79.06 \pm .07$	$91.60 \pm .03$
M3S	$82.72 \pm .13$	$73.73 \pm .32$	$77.62 \pm .11$	$91.08 \pm .09$
APPNP	$85.09 \pm .25$	$75.73 \pm .30$	$79.73 \pm .31$	$91.74 \pm .16$
DAGNN	$85.65 \pm .23$	$74.53 \pm .17$	$79.59 \pm .37$	$92.80 \pm .17$
C&S	$83.18 \pm .31$	$70.51 \pm .24$	$77.10 \pm .34$	$92.49 \pm .19$
GPR-GNN	$83.53\pm.31$	$71.18\pm.25$	$79.62 \pm .46$	$92.57 \pm .21$
Meta-PN	$\textbf{86.33} \pm \textbf{.36}$	$\textbf{77.13} \pm \textbf{.31}$	$\textbf{80.39} \pm \textbf{.53}$	$\textbf{93.92} \pm \textbf{.17}$

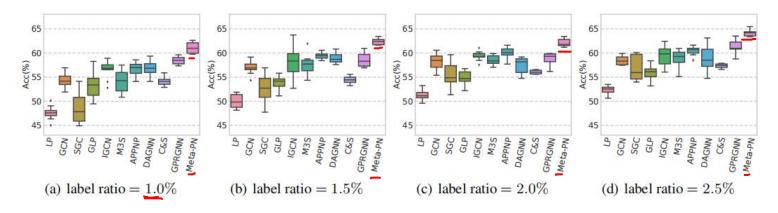


Figure 2: Comparison results on ogbn-arxiv w.r.t different size of training labels.

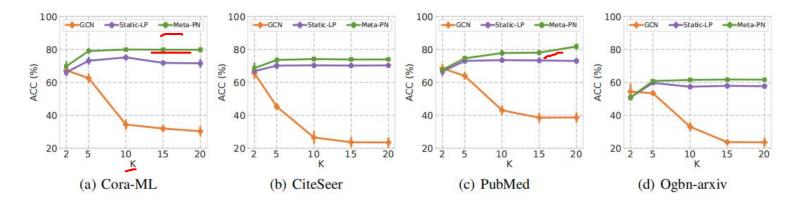


Figure 3: Few-shot (i.e., 5-shot or 1.0% label ratio) evaluation on different datasets w.r.t. propagation steps (K).

ATAI Advanced Technique of Artificial Intelligence

Thank you!

